



| 1<br>2                                                    | impacts on ground-level ozone and methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4                                                    | Cheng Gong <sup>1*</sup> , Yan Wang <sup>2</sup> , Hanqin Tian <sup>3,4</sup> , Sian Kou-Giesbrecht <sup>5</sup> , Nicolas Vuichard <sup>6</sup> and Sönke Zaehle <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | <ul> <li><sup>1</sup> Max Planck Institute for Biogeochemistry, Jena, 07745, Germany</li> <li><sup>2</sup> State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&amp;F University, Hangzhou, 311300, China</li> <li><sup>3</sup>Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, MA, USA</li> <li><sup>4</sup>Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, USA</li> <li><sup>5</sup>Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia, Canada</li> <li><sup>6</sup>Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France</li> </ul> |
| 16                                                        | Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17                                                        | Natural and agricultural soils are important sources of nitrogen oxides (NO <sub>x</sub> ), accounting for about 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 18                                                        | - $20\%$ of the global $NO_x$ emissions. The increased application of nitrogen (N) fertilizer in agriculture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19                                                        | has strongly enhanced the N availability of soils in the last several decades, leading to higher soil NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20                                                        | emissions. However, the magnitude of the N fertilizer-induced soil NO <sub>x</sub> emissions remains poorly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 21                                                        | constrained due to limited field observations, resulting in divergent estimates. Here we integrate the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 22                                                        | results from meta-analyses of field manipulation experiments, emission inventories, atmospheric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 23                                                        | chemistry modelling and terrestrial biosphere modelling to investigate these uncertainties and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24                                                        | associated impacts on ground-level ozone and methane. The estimated present-day global soil NOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25                                                        | emissions induced by N fertilizer application varies substantially (0.84-2.2 Tg N yr <sup>-1</sup> ) among different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 26                                                        | approaches with different spatial patterns. Simulations with the 3-D global chemical transport mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 27                                                        | GEOS-Chem demonstrate that N fertilization enhances global surface ozone concentrations during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 28                                                        | summertime in agricultural hotspots, such as North America, western Europe and eastern and southern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 29                                                        | Asia by 0.3 to 3.3 ppbv. Our results show that such spreads in soil NO <sub>x</sub> emissions also affect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 30                                                        | atmospheric methane concentrations, reducing the global mean by 7.1 ppbv to 16.6 ppbv as indirect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 31                                                        | consequence of enhanced N fertilizer application. These results highlight the urgent need to improve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 32                                                        | the predictive understanding of soil NO <sub>x</sub> emission responses to fertilizer N inputs and its representation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 33                                                        | in atmospheric chemistry modelling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 34                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

\*Correspondence to: Cheng Gong (cgong@bgc-jena.mpg.de)

1. Introduction



36

59 60

61



Nitrogen oxides ( $NO_x=NO + NO_2$ ), as one of the most important reactive atmospheric components, 37 38 strongly affect the atmospheric oxidation capacity and further influence air quality (Gong et al., 2020; 39 Zhai et al., 2021; Goldberg et al., 2022; Zhao et al., 2023), radiative forcing (Erisman et al., 2011; Pinder 40 et al., 2012; Gong et al., 2024), as well as carbon (C) storage in terrestrial and marine ecosystems 41 (Fowler et al., 2013; Fleischer et al., 2019; Rubin et al., 2023). The major source of present-day 42 atmospheric NO<sub>x</sub> is fossil fuel combustion (Martin et al., 2003; Hoesly et al., 2018), but several nonfossil-fuel sources, including emissions from soils, lightning and wildfire (Zhang et al., 2003), 43 44 contribute to around 30% of the global total NO<sub>x</sub> emissions (Delmas et al., 1997; Weng et al., 2020). 45 However, these non-fossil-fuel sources have been widely regarded as 'natural' sources, where the 46 perturbation by anthropogenic activities as well as the associated potentially significant effects on the 47 N cycle are often overlooked. Meanwhile, strict clean-air actions have been applied in many countries in the past decades to sharply reduce the fossil-fuel sources of NO<sub>x</sub>(Jiang et al., 2022). As a result, non-48 49 fossil sources of NO<sub>x</sub> will be increasingly important for future clean air policies. One of the most important non-fossil-fuel anthropogenic sources of NO<sub>x</sub> is through agricultural 50 activities, which have been estimated to enhance soil NO<sub>x</sub> emissions by around 5%-30% (Wang et al., 51 52 2022; Gong et al., 2024). To assess the soil NO<sub>x</sub> emissions induced by N fertilizer application (hereafter, 53 SNO<sub>x</sub>-Fer), the most straightforward and widely-used method is applying the emission factor (EF), 54 which indicates the proportion of N from fertilizer application emitted as NO<sub>x</sub>. The Intergovernmental 55 Panel on Climate Change (IPCC) methodology recommended a constant EF value 1.1% with an uncertainty range of 0.06% to 2.18% (Hergoualc'h et al., 2019). Other studies recommend slightly 56 57 smaller uncertainty ranges (0.47% to 1.61%) based on different meta-analysis datasets (Stehfest and 58 Bouwman, 2006; Liu et al., 2017; Skiba et al., 2021; Wang et al., 2022). This large uncertainty range

Some studies have suggested to use non-linear EF to take account of the observations that the EFs of 62 63 soil reactive nitrogen gases tend to increase with increasing fertilizer application (Shcherbak et al., 2014; Jiang et al., 2017). Such approach assumes that plants and soil microbes should have priority to access 64 soil available N for their metabolic activities, while the excessive inorganic N can be used by nitrifiers 65 and denitrifiers and loses as the gas form. Such a non-linear EF approach is more ecologically 66 67 reasonable but there remain large uncertainties in assessing soil NO<sub>x</sub> due to the limited available field 68 data. For example, Wang et al. (2024) examined the non-linear EF of soil NO<sub>x</sub> based on a global metaanalysis and found a much lower EF (around 0-0.7%) than the IPCC recommended linear EF (1.1%) 69 70 within the range of normal agricultural crop N fertilizer loading (around 0-600 kg N ha<sup>-1</sup> yr<sup>-1</sup>).

results from the dependency of the response of soil NO<sub>x</sub> emissions on intricate soil biogeochemical

processes and varies with crop types, soil texture, fertilizer types and application rate (Wang et al.,

2022). To date, limited field experiments are available to constrain this uncertainty range.





71 In many of the atmospheric chemical transport model (CTMs), SNO<sub>x</sub>-Fer is represented by the 72 agriculture sector of NO<sub>x</sub> emission from an anthropogenic emission inventory (e.g. Emissions Database 73 for Global Atmospheric Research (EDGAR) or Community Emissions Data System (CEDS)), which 74 in general apply the method of linear EF to estimate the agricultural NO<sub>x</sub> emissions (Hoesly et al., 2018; 75 Janssens-Maenhout et al., 2019; Nicholas Hutchings et al., 2023) with the caveats described above. 76 Furthermore, some advanced CTMs, e.g. the GEOS-Chem model, parametrizes soil NO<sub>x</sub> emissions as 77 a function of N availability as well as soil temperature and soil moisture (Steinkamp and Lawrence, 78 2011; Hudman et al., 2012). The currently widely-used soil NO<sub>x</sub> scheme named by the Berkeley-Dalhousie Soil NO<sub>x</sub> Parameterization (BDSNP), however, fixes the SNO<sub>x</sub>-Fer in the year of 1998 (See 79 80 the detailed parameterization in Sect. 2). As a result, such parameterization in CTMs do not capture the effect of increasing agricultural N fertilizer application on soil NOx emissions as well as the associated 81 82 impacts on atmospheric chemistry. 83 Recently, another approach to modelling SNO<sub>x</sub>-Fer has emerged by the development of global, process-84 based terrestrial biosphere models (TBMs) with fully-coupled C and N cycles (Zaehle and Friend, 2010; 85 Tian et al., 2019). Driven by data of N inputs (N synthesis fertilizer, N manure application and N deposition), CO2 concentrations and climate, these TBMs could simulate the coupled-cycles of C and 86 87 N in the terrestrial biosphere, mimic the competition on the available N between plants and microbes and calculate the rates of nitrification and denitrification (Zaehle and Dalmonech, 2011), which are the 88 two microbial processes that determine the rates of soil NO<sub>x</sub> emissions. Even though TBMs provides a 89 90 more ecologically-mechanistic description of the terrestrial N cycles, large uncertainties remained 91 among different TBMs due to the varying parameterization and modelling schemes on biome N use 92 strategies, mineralization of organic N, nitrification and denitrification processes (Kou-Giesbrecht et 93 al., 2023), which lead to varied responses of soil NO<sub>x</sub> to the increased N fertilizer inputs (Gong et al., 94 2024). 95 In this study, we attempt to comprehensively quantify the uncertainties in current SNO<sub>x</sub>-Fer estimates 96 by integrating results from meta-analyses, emission inventories, as well as CTMs and TBMs. We use 97 this understanding to assess the associated effects of SNO<sub>x</sub>-Fer uncertainties on global O<sub>3</sub> and CH<sub>4</sub> 98 concentrations. Section 2 will introduce the N synthetic fertilizer and manure input data and each approach to estimate SNO<sub>x</sub>-Fer. Section 3 will introduce the CTM model used in this study and the 99 100 configuration of sensitive experiments. Section 4 will firstly show the variations of SNO<sub>x</sub>-Fer among 101 different approaches, and then analyze the associated uncertainties in global O<sub>3</sub> and CH<sub>4</sub> simulations. 102 Finally, the conclusion and discussions of this study will be given in section 5.

103 104

2. Data and Methods





- 2.1. Linear and Non-linear EFs and the global fertilizer N dataset
- 106 We firstly implement the most traditional method with a constant EF value to estimate the effects of N
- fertilizer application on soil NO<sub>x</sub> emissions, where the value of 1.1% (named as  $EF_{linear}$  hereafter) based
- on the most up-to-date IPCC methodology is adopted (Hergoualc'h et al., 2019). Furthermore, based on
- the latest meta-analysis dataset developed by Wang et al. (2024), a non-linear EF method (EF<sub>non-linear</sub>)
- 110 to describe the variations of soil NO<sub>x</sub> emissions with different N fertilizer loadings is also applied:
- $EF_{non-linear} = (0.22 + 0.008 \times Fertilizer_N)$  (1)
- 112 where the  $EF_{non-linear}$  (%) is the non-linear EF and  $Fertilizer_N$  is the loading of fertilizer N application
- 113 (kg N ha<sup>-1</sup>). The detailed derivation of this formula is presented by in Wang et al. (2024), which follows
- a comparable method as presented by Shcherbak et al. (2014).
- 115 We used the dataset of History of anthropogenic Nitrogen inputs (HaNi) (Tian et al., 2022) for the
- 116 global rate of synthetic fertilizer and manure application, in order to estimate SNOx-Fer with both of
- the linear and non-linear EF methods. The HaNi dataset includes grid-level annual loadings of (1) NH<sub>4</sub><sup>+</sup>-
- 118 N synthetic fertilizer applied to cropland, (2) NO<sub>3</sub>-N synthetic fertilizer applied to cropland, (3) NH<sub>4</sub><sup>+</sup>-
- N synthetic fertilizer applied to pasture, (4) NO<sub>3</sub>-N synthetic fertilizer applied to pasture, (5) manure
- 120 NH<sub>4</sub><sup>+</sup>-N application on cropland, (6) manure NO<sub>3</sub><sup>-</sup>-N application on pasture, (7) manure NH<sub>4</sub><sup>+</sup>-N
- 121 deposition on pasture, (8) manure NO<sub>3</sub>-N deposition on rangeland. We use a global map of land use
- 122 class distributions (Hurtt et al., 2020) (Fig. S1) to convert the unit of N loading in HaNi from g N grid
- 123 to kg N (ha pasture)<sup>-1</sup>, kg N (ha rangeland)<sup>-1</sup> or kg N (ha cropland<sup>-1</sup>). The annual N synthetic fertilizer
- 124 and manure from HaNi dataset are evenly applied in the months of growing season, while the rates of
- 125 N inputs are set as zero during the non-growing season. We define growing season as monthly-mean 2-
- metre temperature larger than 5 degree Celsius (based on the MERRA2 reanalyzed dataset, see below
- 127 Sect. 3) and the grid-level monthly-mean leaf area index (LAI) larger than 0.5 (based on MODIS remote
- 128 sensing dataset postprocessed by Yuan et al. (2011) and updated for the use of GEOS-Chem,
- 129 http://geoschemdata.wustl.edu/ExtData/HEMCO/Yuan XLAI/v2021-06/). Finally, the rates of
- 130 synthetic fertilizer and manure N inputs with the unit of kg N (ha pasture/rangeland/cropland)<sup>-1</sup> month
- 131 are utilized to estimate global SNO<sub>x</sub>-Fer with the both of the linear and non-linear EF approaches.
- 132 2.2. The emissions inventory
- We use the CEDS (Hoesly et al., 2018) for assessing the fertilizer-induced soil NO<sub>x</sub> emissions in the
- emission inventories. The agricultural NO<sub>x</sub> emissions in CEDS is from the EDGAR 4.3.1
- 135 (https://edgar.jrc.ec.europa.eu/), where the old IPCC methodology (Eggleston et al., 2006) is used with
- a constant EF value of 0.7% (Janssens-Maenhout et al., 2019).
- 137 2.3. The BDSNP scheme





- 138 The BDSNP scheme in CTMs is firstly developed by Yienger and Levy (1995), and then updated by
- Hudman et al. (2012). The emission of soil  $NO_x(S_{nox})$  is described as:

140 
$$S_{nox} = (A_{w,biome} + N_{avail} \times \bar{E}) \times f(T) \times g(\theta) \times P(l_{dry})$$
 (2)

- Where f(T),  $g(\theta)$  and  $P(l_{dry})$  indicate the effects of temperature, soil moisture and the rain pulsing.
- 142 A<sub>w,biome</sub> is the wet biome-dependent emission (the baseline emission) from Steinkamp and Lawrence
- 143 (2011).  $N_{avail}$  is the soil available N mass in the top 10 cm (ng N m<sup>-2</sup>), which is calculated by:

144 
$$N_{avail}(t) = N_{avail}(0)e^{-\frac{t}{\tau}} + Fertilizer_N \times \tau \times (1 - e^{-\frac{t}{\tau}})$$
 (3)

- Where the initial soil available N mass  $N_{avail}(0)$  is prescribed. Fertilizer N is the rate of fertilizer N
- application, which is set as zero outside the growing season.  $\tau$  indicates the decay rate and is chosen as
- 4 months based on the measurement within the top 10 cm soil (Matson et al., 1998; Cheng et al., 2004;
- Russell et al., 2011). However, it should be noted that magnitude of global SNO<sub>x</sub>-Fer (i.e. the  $N_{avail} \times \bar{E}$ )
- is scaled by the factor  $\bar{E}$  in Eq. (2) to meet 1.8 Tg N yr<sup>-1</sup>, which is the value obtained in a previous meta-
- analysis study based on the fertilizer N input dataset in the year of 1998 (Stehfest and Bouwman, 2006).
- 151 As a result, the BDNSP scheme actually fails to capture the year-to-year variations of soil NO<sub>x</sub>
- emissions with the changing soil N availability. However, as the BDNSP scheme is still widely used by
- the community of atmospheric chemistry modelling (e.g. Lu et al., 2021; Wang et al., 2022; Huber et
- al., 2023), here we include it as one optional method to better represent the uncertainties in the soil  $NO_x$
- emissions induced by N fertilizer application. The soil NO<sub>x</sub> emissions are off-line simulated over 1980-
- 156 2019 within the framework of the Harmonized Emissions Component (HEMCO) in GEOS-Chem,
- which can be accessed in http://geoschemdata.wustl.edu/ExtData/HEMCO/OFFLINE SOILNOX/ .
- 158 2.4. The TBM ensemble
- 159 Simulated soil NO<sub>x</sub> emissions were provided by three TBMs (CLASSIC, OCN and ORCHIDEE) with
- 160 fully-coupled C and N cycles included in the global nitrogen/N<sub>2</sub>O model inter-comparison project phase
- 161 2 (NMIP2) (Tian et al., 2024). For each TBM model, anthropogenic fertilizer application are estimated
- by the HaNi dataset (Tian et al., 2022). The SNO<sub>x</sub>-Fer can be isolated by summing up the differences
- 163 between sensitivity experiments SH1 and SH2 (the synthetic fertilizer contribution) and the differences
- between sensitivity experiments SH1 and SH3 (the manure contribution) (Table S1). It should be noted
- that the CLASSIC model did not isolate synthetic fertilizer and manure and thus only conducted one
- sensitivity experiment. The model ensemble mean is utilized to smooth the large discrepancies among
- 167 different TBMs (Fig. S2) due to the varied terrestrial N-cycle representations, in particular, the varied
- 168 nitrification and denitrification rates.
- 169 3. The GEOS-Chem model and sensitivity experiment configuration



171

172

173

174

175

176177

178

179180

181

182 183

184

185

186 187

188

Chem.



The GEOS-Chem model is a frequently used state-of-the-art CTMs with fully coupled NOx-Oxhydrocarbon-aerosol chemistry mechanism (Bey et al., 2001; Park et al., 2004). Here we applied the version 12.0.0 to run the global simulation with a horizontal resolution of  $2^{\circ}$  latitude  $\times$  2.5° longitude. The simulations are driven by the Version two of modern era retrospective-analysis for research and application (MERRA2) reanalyzed meteorological dataset. The photolysis rates were computed by Fast-JX scheme (Park et al., 2004). The atmospheric gas-phase chemistry is solved by the Kinetic Pre-Processor (KPP) (Henze et al., 2007). In particular, the default soil NO<sub>x</sub> emissions are simulated by the BDSNP scheme as introduced above. In order to examine the uncertainties in the SNO<sub>x</sub>-Fer and the associated effects on global surface O<sub>3</sub> concentrations, we firstly run a reference simulation in 2019 (named Zero) with zero SNO<sub>x</sub>-Fer to exclude the influence of fertilizer application on soil NO<sub>x</sub>. Then five different experiments are performed by representing SNO<sub>x</sub>-Fer with CEDS agricultural NO<sub>x</sub> emissions (named CEDS), the BDSNP (Eq. 2), scheme (named BDSNP), the TBM ensembles (named NMIP2), the linear EF (EF=1.1%) method (named Linear) and the non-linear EF (Eq. 1) method (named Nonlinear), respectively. All of the sensitivity experiments are driven by the meteorological field in the year of 2019 with 6-month spin up, where the anthropogenic emissions of all other tracers also keep at the level of 2019 following the CEDS inventory. Table 1 summarizes the six sensitivity experiments in GEOS-

Table 1. Summary of the sensitivity experiments in GEOS-Chem.

| Experiment name | Emissions of SNOx-Fer                    |  |
|-----------------|------------------------------------------|--|
| Zero            | 0                                        |  |
| CEDS            | CEDS agricultural NO <sub>x</sub> sector |  |
| BDSNP           | BDSNP                                    |  |
| NMIP2           | TBM ensemble mean                        |  |
| Linear          | Linear EF                                |  |
| Nonlinear       | Non-linear EF                            |  |
|                 |                                          |  |

189 190

191

192 193

194 195 Because the default GEOS-Chem simulations used above do not account for interactive CH<sub>4</sub> chemistry, we further conducted six more sensitivity experiments with the special 'CH<sub>4</sub> run' in GEOS-Chem (East et al., 2024; Fu et al., 2024) to assess the variations in the atmospheric CH<sub>4</sub> concentrations induced by the uncertain SNO<sub>x</sub>-Fer. The special CH<sub>4</sub> run takes CH<sub>4</sub> as the only one atmospheric transport tracer with various prescribed CH<sub>4</sub> sources (summarized in Table S2), while the CH<sub>4</sub> sinks include the tropospheric reactions with hydroxyl radical (OH) and chlorine, stratospheric loss and soil uptake. The





global monthly mean OH concentrations archived from the six sensitivity experiments (Table 1) are applied in the CH<sub>4</sub> simulation to assess the SNOx-Fer effect on CH<sub>4</sub> lifetime through perturbing atmospheric oxidation capacity. As a result, there will be six more associated sensitivity experiments with the CH<sub>4</sub> run that corresponds to the default GEOS-Chem simulations in Table 1. Each CH<sub>4</sub> simulation runs for 15 years by repeating the meteorological forcings in 2019 to reach a semi-equilibrium with the prescribed emissions and OH concentrations. The last year of the simulation is utilized to analyze the influences of soil NO<sub>x</sub> on CH<sub>4</sub> induced by N fertilizer application. The simulated global surface CH<sub>4</sub> concentrations driven by varied OH levels from different sensitivity experiments are shown in Fig. S3.

Results

## 4.1 Varied SNO<sub>x</sub>-Fer among different approaches

Figure 1a shows the historical time series of global SNO<sub>x</sub>-Fer over 1950-2019 estimated by different approaches, which is mainly driven by the substantial increases in global N fertilizer application (Fig. 1b). Almost all approaches except BDSNP showed enhancements in soil NO<sub>x</sub> emissions but with largely varied magnitudes from 0.6 to 2.2 Tg yr<sup>-1</sup>. The BDNSP scheme, which scales soil NO<sub>x</sub> emissions with time-variant temperature and soil moisture, but assumes constant N availability (see Methods), estimates the relatively stable soil NO<sub>x</sub> emissions over 1980-2019. The sharpest increase of the soil NO<sub>x</sub> emission is simulated by the TBM ensemble, mainly induced by the high estimates of the CLASSIC and ORCHIDEE models (Fig. S2). Soil NO<sub>x</sub> estimated by the non-linear EF approach shows substantially weaker response to fertilizer inputs relative to other estimating approaches.

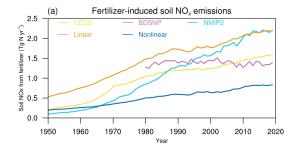









Figure 1. Global estimates of N fertilizer-induced soil NO<sub>x</sub> emissions by different approaches. (a) The global annual-mean N fertilizer-induced soil NO<sub>x</sub> emissions over 1950-2019 estimated by emission inventory (CEDS), linear and non-linear EF, the widely-used CTM parameterization (BDSNP) and the TBM ensembles (NMIP2). (b) The global annual-mean N synthetic fertilizer and manure inputs over 1950-2019 assessed from the HaNi dataset.

Figure 2 shows the global spatial patterns of SNO<sub>x</sub>-Fer among different approaches. Each approach shows consistent spatial patterns aligned with the distribution of N synthetic fertilizer and manure inputs (Fig. 2a), where eastern U.S., western Europe, eastern and southern Asia are the hotspots with high soil NO<sub>x</sub> emissions. Notably, even though the TBM ensemble (NMIP2) and the Linear EF approach estimate similar global total SNO<sub>x</sub>-Fer, the spatial distributions of both estimates vary strongly. The SNO<sub>x</sub>-Fer estimates by NMIP2 ensemble are higher in agricultural hotspots (Table 3), but lower in regions with less synthetic fertilizer application, e.g. in part of the Africa and South America (Figs. 2d and 2e), relative to the Linear EF approach. This result is likely due to the explicit representation of N dynamics in TBMs, which yields a higher sensitivity of soil NO<sub>x</sub> emissions to N fertilizer application in N saturated region, and therefore deviations from the linear EF approach.

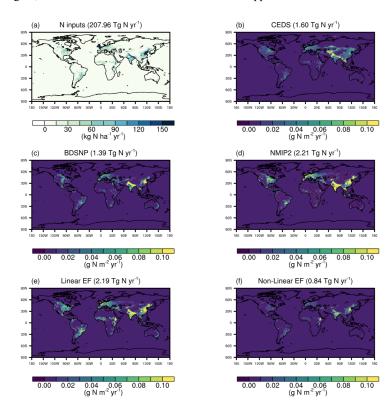







Figure 2. The global spatial patterns of N synthetic fertilizer and manure application and the N-fertilization induced soil NO<sub>x</sub> emissions estimated by different approaches in 2019. (a) The N synthetic fertilizer and manure application in 2019 from the HaNi dataset. (b) - (f) The soil NO<sub>x</sub> emissions induced by N fertilizer estimated by the CEDS agricultural sector, the BDNSP scheme in GEOS-Chem, the NMIP2 ensemble, the linear EF and non-linear EF, respectively.

Table 3. The annual soil NO<sub>x</sub> emissions (Gg N yr<sup>-1</sup>) induced by N fertilizer in 2019 in the eastern U.S., western Europe, eastern Asia, southern Asia as well as the global estimates by different approaches. The ranges in NMIP2 indicate the highest and lowest values among three TBMs

(CLASSIC, ORCHIDEE and OCN)

|                   | Eastern U.S. (35-45N, 75-90W) | Western Europe (35-60N, 10W-20E) | Eastern Asia (20-50N, 100-125E) | Southern Asia<br>(10-30N, 70-85E) | Globe                |
|-------------------|-------------------------------|----------------------------------|---------------------------------|-----------------------------------|----------------------|
| CEDS              | 20.9                          | 99.1                             | 190.0                           | 104.8                             | 1600                 |
| BDSNP             | 15.8                          | 112.1                            | 229.2                           | 185.7                             | 1390                 |
| NMIP2             | 57.0<br>[15.1, 100.9]         | 206.3<br>[67.4, 267.3]           | 417.5<br>[261.0, 598.1]         | 382.4<br>[78.4, 776.3]            | 2210<br>[1280, 2740] |
| Linear EF         | 54.3                          | 181.0                            | 376.4                           | 214.7                             | 2190                 |
| Non-<br>Linear EF | 15.6                          | 60.8                             | 136.5                           | 141.8                             | 840                  |

## 4.2 Impacts of SNO<sub>x</sub>-Fer on surface O<sub>3</sub> concentrations

We next examine how the different SNO<sub>x</sub>-Fer estimates influence the surface O<sub>3</sub> concentrations globally. Since soil NO<sub>x</sub> emissions typically peak during the summer period, when O<sub>3</sub> pollution tends to be most severe, we focus our analysis on the surface maximum daily 8-h averaged (MDA8) O<sub>3</sub> concentrations averaged over the northern hemisphere summer (June, July and August) based on the sensitivity experiments in Table 1. Figure 3 shows that the N fertilizer application enhanced the globally-averaged surface summertime O<sub>3</sub> MDA8 concentrations by 0.09-0.30 ppbv in 2019. In agricultural regions, the enhancement of O<sub>3</sub> concentrations due to SNOx-Fer reaches 0.3-3.3 ppbv (Fig. 4). Figure 4 also highlights important differences in the spatial effect of NO<sub>x</sub> on O<sub>3</sub>, consistent with the regional effects on SNOx-Fer (Table 3), that the NMIP2 estimate of SNOx-Fer shows stronger contributions to the O<sub>3</sub> concentrations than the linear EF approach in agricultural regions. The non-linear EF method leads to the lowest O<sub>3</sub> enhancement, although both non-linear EF and TBMs estimates increasing soil NO<sub>x</sub> emissions with soil N availability.



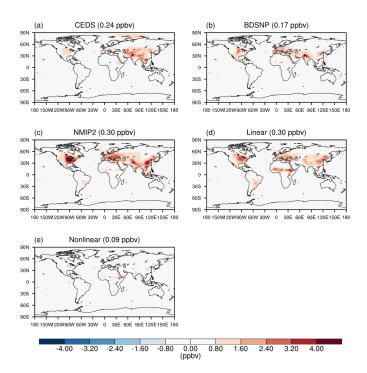
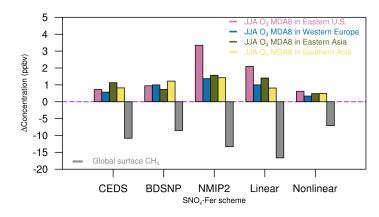




Figure 3. Global simulated changes in surface MDA8  $O_3$  concentrations induced by different estimating approaches of SNO<sub>x</sub>-Fer averaged over June, July and August in 2019. The differences are

calculated between corresponding sensitivity experiments in Table 1 and the Zero experiment. The numbers in each sub-title are changes in the global averaged summertime MDA8  $O_3$  concentrations

induced by SNOx-Fer.



265

258

259

260

261

262263





266 Figure 4. Changes in summertime averaged surface MDA8 O<sub>3</sub> concentrations (positive Y axis) and 267 global surface CH<sub>4</sub> concentrations (negative Y axis) induced by SNO<sub>x</sub>-Fer uncertainties. The regional 268 MDA8 O<sub>3</sub> concentrations are averaged over Eastern U.S. (35-45N, 75-90W), Western Europe (35-269 60N, 10W-20E), Eastern Asia (20-50N, 100-125E) and Southern Asia (10-30N, 70-85E). 270 271 4.3 The impacts of SNO<sub>x</sub>-Fer uncertainties on global CH<sub>4</sub> estimates 272 Figure 4 shows that N fertilizer-induced soil NO<sub>x</sub> induced the reduction of global averaged CH<sub>4</sub> 273 concentrations ranging from 7.1 ppbv to 16.6 ppbv in 2019 by affecting atmospheric OH concentrations 274 (Fig. S4). This magnitude of this estimate is consistent with recent estimates of around 17.4 ppbv by Gong et al. (2024), which relies on the same NMIP2 dataset and a simpler CH<sub>4</sub> box model to calculate 275 the impacts of NO<sub>x</sub> emissions on the atmospheric lifetime of CH<sub>4</sub>. This result highlights an important 276 277 but indirect role of SNO<sub>x</sub>-Fer on atmospheric CH<sub>4</sub> concentrations, which is an often-overlooked aspect 278 for the global CH<sub>4</sub> budget. However, the uncertainty range in our estimates clearly suggests the need to 279 further improve our understanding in soil N biogeochemical processes to better predict global OH reactivity as well as close global CH4 budget. 280 281 282 5. Discussions 283 In this study, we integrated knowledge from meta-analyses, the emission inventory, parameterizations 284 in CTMs and the TBM ensembles to better quantify the uncertainties in N fertilizer-induced soil NO<sub>x</sub> 285 emissions and the associated impacts on global O<sub>3</sub> and CH<sub>4</sub> concentrations. Our results showed a large variation of the global soil NOx emissions associated with N fertilizer, ranging from 0.84 Tg N yr<sup>-1</sup> to 286 2.2 Tg N yr<sup>-1</sup> in 2019. This range of responses leads to an enhancement in summertime surface MDA8 287 O<sub>3</sub> concentrations of 0.3 ppbv to 3.3 ppbv in agricultural hotspot regions and a reduction in global CH<sub>4</sub> 288 289 concentrations of 7.1 ppbv to 16.6 ppbv. These changes highlight a significant role of agricultural N 290 use and soil N biogeochemical processes in affecting regional O<sub>3</sub> concentrations as well as controlling 291 global greenhouse gases. In particular, with the worldwide reduction in fossil-fuel NO<sub>x</sub> emissions 292 associated with clean-air actions (Jiang et al., 2022), control of agricultural soil NO<sub>x</sub> emissions becomes 293 increasingly important to improve air quality and alleviate the associated public health risks. 294 However, challenges remain in the accurate assessment of N fertilizer-induced soil NO<sub>x</sub> emissions. On 295 the one hand, the overall uncertainties of SNO<sub>x</sub>-Fer may still be underestimated. The EF-approach with fixed EF fails to adequately reflect the complexity in soil biogeochemical processes, which is reflected 296 297 by the large ranges of EFs from 0.06% to 2.18% in a recent meta-analysis (Hergoualc'h et al., 2019). 298 While the non-linear EF method represents an advance over the linear EF approach, as the effects of

soil N saturation levels on soil N gas emissions are considered and therefore the approach yields





301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319 320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

relatively good performance in predicting soil N2O or NH3 emissions compared to observations (Shcherbak et al., 2014; Jiang et al., 2017), the limited availability of observations to constrain these responses and their limited spatiotemporal representativeness reduce the reliability of this approach. Most of the experimental data in Wang et al. (2024) are collected over China in the past ten years and thus may not be representative of other agricultural regions. Furthermore, 22 out of 55 data points are from vegetable cropping systems and orchard fields, where frequent irrigation may enhance soil moisture and thus inhibit the production of NO<sub>x</sub> via nitrification. Last but not least, other factors, such as soil texture, pH, soil organic carbon and fertilizer types, may also affect the response of soil NOx emissions to the loading of N fertilizer application, which are omitted by either the linear EF or nonlinear EF approach. As a result, more representative crop experiments with a gradient series of N addition are necessary to better constrain the soil NO<sub>x</sub> response to N fertilizer application. On the other hand, recent developments of the parameterization of BDNSP in CTMs focused more on the soil NO<sub>x</sub> responses to changing temperature or soil moisture (e.g. Wang et al., 2021; Huber et al., 2023), while assuming time invariant soil N availability as shown in Eq. 2. As demonstrated by the comparison of BDNSP with the predictions from both the empirical EF methods and the TBM simulations of NMIP2, this lack of consideration of N availability and soil N legacy will introduce errors when analyzing long-term trends in predictions by CTMs. Meanwhile, terrestrial N availability is a key concept in the development of TBMs, as the process-based TBMs need detailed description of the N cycle to understand nutrient limitation levels and associated C-N coupling. Nevertheless, the soil NO<sub>x</sub> emissions have been overlooked by the ecological modelling community because the low emissions may not be important for the terrestrial N cycle, resulting in a limited number of TBMs that include soil NO<sub>x</sub> emissions as well as large inter-model variations (Fig. S2). To further reduce the uncertainties in soil NOx emission estimates, the advantages of TBMs on representing soil N availability can be introduced into CTMs to better examine the effects of agricultural activities on atmospheric chemistry, but at the same time, the terrestrial N cycle needs to be further developed in TBMs to reduce inter-model variations and to better predict soil emissions of reactive N gases (not only NO<sub>x</sub> but also N<sub>2</sub>O and NH<sub>3</sub>). To summarize, with a comprehensive investigation of different approaches to describe SNO<sub>x</sub>-Fer, our results revealed the associated important uncertainties in simulating regional air quality and the global greenhouse gas CH<sub>4</sub>. However, the limited number of field experiments impedes accurate assessments of the soil NO<sub>x</sub> responses to N fertilizer application as well as improving its representation in both CTMs and TBMs, resulting in large uncertainties in estimates of N fertilizer-induced soil NO<sub>x</sub> emissions. We thus highlight the essential necessity to integrate knowledge between agricultural data, atmospheric chemistry modelling and soil biogeochemistry to better represent soil NOx emissions in models and improve our understanding of the associated effects on air quality and the global CH<sub>4</sub> budget.





| 338 101003536; ESM2025).  339  340 Code and data availability  341 The GEOS-Chem source code can be assessed in <a href="https://github.com/geoschem/geos-chem.">https://github.com/geoschem/geos-chem.</a> The CE  342 inventory used in GEOS-Chem can be downloaded  343 <a href="https://ftp.as.harvard.edu/gegrid/data/ExtData/HEMCO/CEDS/">https://ftp.as.harvard.edu/gegrid/data/ExtData/HEMCO/CEDS/</a> . The NMIP2 model outputs can  344 downloaded through the open-accessed data in Gong et al. (2024).  345  346 Author contributions  347 C.G. designed the study. C.G. performed the GEOS-Chem simulations and data analysis. Y.W. ha  348 the non-linear EF analysis. H.T. led the NMIP2 projects. S.K., N.V., and S.Z. together contributed the simulation of terrestrial biosphere models in NMIP2. C.G. wrote the manuscript. All of the authors contributed to reviewing or editing the manuscript.  350  351 Conflict of interest  352 The authors declare no conflict of interest.  353  354 References:  355 References:  356 Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 1 23073-23095, 10.1029/2001jd000807, 2001. | 335                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 338 101003536; ESM2025).  339  340 Code and data availability  341 The GEOS-Chem source code can be assessed in <a href="https://github.com/geoschem/geos-chem.">https://github.com/geoschem/geos-chem.</a> The CE  342 inventory used in GEOS-Chem can be downloaded  343 <a href="https://ftp.as.harvard.edu/gegrid/data/ExtData/HEMCO/CEDS/">https://ftp.as.harvard.edu/gegrid/data/ExtData/HEMCO/CEDS/</a> . The NMIP2 model outputs can  344 downloaded through the open-accessed data in Gong et al. (2024).  345  346 Author contributions  347 C.G. designed the study. C.G. performed the GEOS-Chem simulations and data analysis. Y.W. ha  348 the non-linear EF analysis. H.T. led the NMIP2 projects. S.K., N.V., and S.Z. together contributed the simulation of terrestrial biosphere models in NMIP2. C.G. wrote the manuscript. All of the authors contributed to reviewing or editing the manuscript.  350  351 Conflict of interest  352 The authors declare no conflict of interest.  353  354 References:  355 References:  356 Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 1 23073-23095, 10.1029/2001jd000807, 2001. | 336                                                                | Acknowledgement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Code and data availability  The GEOS-Chem source code can be assessed in <a href="https://github.com/geoschem/geos-chem">https://github.com/geoschem/geos-chem</a> . The CE inventory used in GEOS-Chem can be downloaded <a href="https://ftp.as.harvard.edu/gegrid/data/ExtData/HEMCO/CEDS/">https://ftp.as.harvard.edu/gegrid/data/ExtData/HEMCO/CEDS/</a> . The NMIP2 model outputs can downloaded through the open-accessed data in Gong et al. (2024).  Author contributions  C.G. designed the study. C.G. performed the GEOS-Chem simulations and data analysis. Y.W. he the non-linear EF analysis. H.T. led the NMIP2 projects. S.K., N.V., and S.Z. together contributed the simulation of terrestrial biosphere models in NMIP2. C.G. wrote the manuscript. All of the authors declare no conflict of interest.  Conflict of interest  The authors declare no conflict of interest.  References:  Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 1 23073-23095, 10.1029/2001jd000807, 2001.                                                                                                                                       |                                                                    | C.G. and S.Z. acknowledge support from the European Commission H2020 programme (Grant-No. 101003536; ESM2025).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| The GEOS-Chem source code can be assessed in <a href="https://github.com/geoschem/geos-chem">https://github.com/geoschem/geos-chem</a> . The CE inventory used in GEOS-Chem can be downloaded <a href="https://frp.as.harvard.edu/gegrid/data/ExtData/HEMCO/CEDS/">https://frp.as.harvard.edu/gegrid/data/ExtData/HEMCO/CEDS/</a> . The NMIP2 model outputs can downloaded through the open-accessed data in Gong et al. (2024).  Author contributions  C.G. designed the study. C.G. performed the GEOS-Chem simulations and data analysis. Y.W. he the non-linear EF analysis. H.T. led the NMIP2 projects. S.K, N.V., and S.Z. together contributed the simulation of terrestrial biosphere models in NMIP2. C.G. wrote the manuscript. All of the authors declare to reviewing or editing the manuscript.  Conflict of interest  The authors declare no conflict of interest.  References:  Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 1 23073-23095, 10.1029/2001jd000807, 2001.                                                                                                                                                     | 339                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| inventory used in GEOS-Chem can be downloaded https://ftp.as.harvard.edu/gegrid/data/ExtData/HEMCO/CEDS/. The NMIP2 model outputs can downloaded through the open-accessed data in Gong et al. (2024).  Author contributions  C.G. designed the study. C.G. performed the GEOS-Chem simulations and data analysis. Y.W. he the non-linear EF analysis. H.T. led the NMIP2 projects. S.K, N.V., and S.Z. together contributed the simulation of terrestrial biosphere models in NMIP2. C.G. wrote the manuscript. All of the authosomorphic contributed to reviewing or editing the manuscript.  Conflict of interest  The authors declare no conflict of interest.  Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 1 23073-23095, 10.1029/2001jd000807, 2001.                                                                                                                                                                                                                                                                                                                                                                                 | 340                                                                | Code and data availability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Author contributions  C.G. designed the study. C.G. performed the GEOS-Chem simulations and data analysis. Y.W. has the non-linear EF analysis. H.T. led the NMIP2 projects. S.K., N.V., and S.Z. together contributed the simulation of terrestrial biosphere models in NMIP2. C.G. wrote the manuscript. All of the authors contributed to reviewing or editing the manuscript.  Conflict of interest  The authors declare no conflict of interest.  References:  Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 1 23073-23095, 10.1029/2001jd000807, 2001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 342<br>343                                                         | https://ftp.as.harvard.edu/gcgrid/data/ExtData/HEMCO/CEDS/. The NMIP2 model outputs can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C.G. designed the study. C.G. performed the GEOS-Chem simulations and data analysis. Y.W. has the non-linear EF analysis. H.T. led the NMIP2 projects. S.K, N.V., and S.Z. together contributed the simulation of terrestrial biosphere models in NMIP2. C.G. wrote the manuscript. All of the authors contributed to reviewing or editing the manuscript.  Conflict of interest  The authors declare no conflict of interest.  References:  Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 1 23073-23095, 10.1029/2001jd000807, 2001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 345                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| the non-linear EF analysis. H.T. led the NMIP2 projects. S.K, N.V., and S.Z. together contributed the simulation of terrestrial biosphere models in NMIP2. C.G. wrote the manuscript. All of the authors contributed to reviewing or editing the manuscript.  Conflict of interest  The authors declare no conflict of interest.  References:  Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 1 23073-23095, 10.1029/2001jd000807, 2001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 346                                                                | Author contributions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The authors declare no conflict of interest.  References:  Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 1 23073-23095, 10.1029/2001jd000807, 2001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 348<br>349<br>350                                                  | C.G. designed the study. C.G. performed the GEOS-Chem simulations and data analysis. Y.W. helps the non-linear EF analysis. H.T. led the NMIP2 projects. S.K, N.V., and S.Z. together contributed to the simulation of terrestrial biosphere models in NMIP2. C.G. wrote the manuscript. All of the authors contributed to reviewing or editing the manuscript.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 354 355 References: 356 Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., 357 Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated 358 meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 1 359 23073-23095, 10.1029/2001jd000807, 2001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 352                                                                | Conflict of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| References:  Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 1 23073-23095, 10.1029/2001jd000807, 2001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 353                                                                | The authors declare no conflict of interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 1 23073-23095, 10.1029/2001jd000807, 2001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 354                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 1 23073-23095, 10.1029/2001jd000807, 2001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 355                                                                | References:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>agricultural soils by nitrification, Soil Biology &amp; Biochemistry, 36, 953-963,</li> <li>10.1016/j.soilbio.2004.02.012, 2004.</li> <li>Delmas, R., Serca, D., and Jambert, C.: Global inventory of NOx sources, Nutrient Cycling in</li> <li>Agroecosystems, 48, 51-60, 10.1023/a:1009793806086, 1997.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 357<br>358<br>359<br>360<br>361<br>362<br>363<br>364<br>365<br>366 | Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 106, 23073-23095, 10.1029/2001jd000807, 2001.  Cheng, W. G., Tsuruta, H., Chen, G. X., and Yagi, K.: N2O and NO production in various Chinese agricultural soils by nitrification, Soil Biology & Biochemistry, 36, 953-963, 10.1016/j.soilbio.2004.02.012, 2004.  Delmas, R., Serca, D., and Jambert, C.: Global inventory of NOx sources, Nutrient Cycling in Agroecosystems, 48, 51-60, 10.1023/a:1009793806086, 1997.  East, J. D., Jacob, D. J., Balasus, N., Bloom, A. A., Bruhwiler, L., Chen, Z. C., Kaplan, J. O., Mickley, L. J., Mooring, T. A., Penn, E., Poulter, B., Sulprizio, M. P., Worden, J. R., Yantosca, R. M., and Zhang, Z.: |





- 369 Eggleston, H., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K.: 2006 IPCC guidelines for national
- 370 greenhouse gas inventories, 2006.
- 371 Erisman, J. W., Galloway, J., Seitzinger, S., Bleeker, A., and Butterbach-Bahl, K.: Reactive nitrogen in
- 372 the environment and its effect on climate change, Current Opinion in Environmental Sustainability,
- 373 3, 281-290, 10.1016/j.cosust.2011.08.012, 2011.
- 374 Fleischer, K., Dolman, A. J., van der Molen, M. K., Rebel, K. T., Erisman, J. W., Wassen, M. J., Pak, B.,
- 375 Lu, X. J., Rammig, A., and Wang, Y. P.: Nitrogen Deposition Maintains a Positive Effect on Terrestrial
- 376 Carbon Sequestration in the 21st Century Despite Growing Phosphorus Limitation at Regional Scales,
- 377 Global Biogeochemical Cycles, 33, 810-824, 10.1029/2018gb005952, 2019.
- Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J., Jenkins, A.,
- 379 Grizzetti, B., Galloway, J. N., Vitousek, P., Leach, A., Bouwman, A. F., Butterbach-Bahl, K., Dentener,
- 380 F., Stevenson, D., Amann, M., and Voss, M.: The global nitrogen cycle in the twenty-first century,
- 381 Philosophical Transactions of the Royal Society B-Biological Sciences, 368, 10.1098/rstb.2013.0164,
- 382 2013
- 383 Fu, B., Li, J. Y., Jiang, Y. Y., Chen, Z. W., and Li, B. A.: Clean air policy makes methane harder to control
- due to longer lifetime, One Earth, 7, 10.1016/j.oneear.2024.06.010, 2024.
- 385 Goldberg, D. L., Harkey, M., de Foy, B., Judd, L., Johnson, J., Yarwood, G., and Holloway, T.:
- 386 Evaluating NOx emissions and their effect on O3 production in Texas using TROPOMI NO2 and
- 387 HCHO, Atmospheric Chemistry and Physics, 22, 10875-10900, 10.5194/acp-22-10875-2022, 2022.
- 388 Gong, C., Liao, H., Zhang, L., Yue, X., Dang, R. J., and Yang, Y.: Persistent ozone pollution episodes in
- North China exacerbated by regional transport, Environmental Pollution, 265,
- 390 10.1016/j.envpol.2020.115056, 2020.
- 391 Gong, C., Tian, H., Liao, H., Pan, N., Pan, S., Ito, A., Jain, A. K., Kou-Giesbrecht, S., Joos, F., Sun, Q., Shi,
- 392 H., Vuichard, N., Zhu, Q., Peng, C., Maggi, F., Tang, F. H. M., and Zaehle, S.: Global net climate effects
- 393 of anthropogenic reactive nitrogen, Nature, 10.1038/s41586-024-07714-4, 2024.
- 394 Henze, D. K., Hakami, A., and Seinfeld, J. H.: Development of the adjoint of GEOS-Chem, Atmospheric
- 395 Chemistry and Physics, 7, 2413-2433, 10.5194/acp-7-2413-2007, 2007.
- 396 Hergoualc'h, K., Akiyama, H., Bernoux, M., Chirinda, N., Prado, A. d., Kasimir, Å., MacDonald, J. D.,
- 397 Ogle, S. M., Regina, K., and Weerden, T. J. v. d.: N2O emissions from managed soils, and CO2
- 398 emissions from lime and urea application, 2019.
- 399 Hoesly, R. M., Smith, S. J., Feng, L. Y., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J.,
- 400 Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J., Li, M., Liu, L.,
- 401 Lu, Z. F., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750-2014) anthropogenic
- 402 emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS),
- 403 Geoscientific Model Development, 11, 369-408, 10.5194/gmd-11-369-2018, 2018.
- 404 Huber, D. E., Steiner, A. L., and Kort, E. A.: Sensitivity of Modeled Soil NOx Emissions to Soil Moisture,
- Journal of Geophysical Research-Atmospheres, 128, 10.1029/2022jd037611, 2023.
- 406 Hudman, R. C., Moore, N. E., Mebust, A. K., Martin, R. V., Russell, A. R., Valin, L. C., and Cohen, R. C.:
- 407 Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space
- 408 based-constraints, Atmospheric Chemistry and Physics, 12, 7779-7795, 10.5194/acp-12-7779-2012,
- 409 2012.
- 410 Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J.,
- 411 Fujimori, S., Goldewijk, K. K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenoder, F., Jungclaus, J.,
- 412 Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J.,
- 413 Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren,
- 414 D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850-
- 415 2100 (LUH2) for CMIP6, Geoscientific Model Development, 13, 5425-5464, 10.5194/gmd-13-5425-
- 416 2020, 2020.
- 417 Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F.,
- 418 Bergamaschi, P., Pagliari, V., Olivier, J. G. J., Peters, J., van Aardenne, J. A., Monni, S., Doering, U.,
- 419 Petrescu, A. M. R., Solazzo, E., and Oreggioni, G. D.: EDGAR v4.3.2 Global Atlas of the three major





- 420 greenhouse gas emissions for the period 1970-2012, Earth System Science Data, 11, 959-1002,
- 421 10.5194/essd-11-959-2019, 2019.
- 422 Jiang, Y., Deng, A. X., Bloszies, S., Huang, S., and Zhang, W. J.: Nonlinear response of soil ammonia
- 423 emissions to fertilizer nitrogen, Biology and Fertility of Soils, 53, 269-274, 10.1007/s00374-017-1175-
- 424 3, 2017.
- 425 Jiang, Z., Zhu, R., Miyazaki, K., McDonald, B. C., Klimont, Z., Zheng, B., Boersma, K. F., Zhang, Q.,
- 426 Worden, H., Worden, J. R., Henze, D. K., Jones, D. B. A., van der Gon, H., and Eskes, H.: Decadal
- 427 Variabilities in Tropospheric Nitrogen Oxides Over United States, Europe, and China, Journal of
- 428 Geophysical Research-Atmospheres, 127, 10.1029/2021jd035872, 2022.
- 429 Kou-Giesbrecht, S., Arora, V. K., Seiler, C., Arneth, A., Falk, S., Jain, A. K., Joos, F., Kennedy, D.,
- 430 Knauer, J., Sitch, S., O'Sullivan, M., Pan, N., Sun, Q., Tian, H., Vuichard, N., and Zaehle, S.: Evaluating
- 431 nitrogen cycling in terrestrial biosphere models: a disconnect between the carbon and nitrogen
- 432 cycles, Earth Syst. Dynam., 14, 767-795, 10.5194/esd-14-767-2023, 2023.
- 433 Liu, S. W., Lin, F., Wu, S., Ji, C., Sun, Y., Jin, Y. G., Li, S. Q., Li, Z. F., and Zou, J. W.: A meta-analysis of
- 434 fertilizer-induced soil NO and combined NO+N<sub>2</sub>O emissions, Global Change Biology, 23,
- 435 2520-2532, 10.1111/gcb.13485, 2017.
- 436 Lu, X., Ye, X. P., Zhou, M., Zhao, Y. H., Weng, H. J., Kong, H., Li, K., Gao, M., Zheng, B., Lin, J. T., Zhou,
- 437 F., Zhang, Q., Wu, D. M., Zhang, L., and Zhang, Y. H.: The underappreciated role of agricultural soil
- 438 nitrogen oxide emissions in ozone pollution regulation in North China, Nature Communications, 12,
- 439 10.1038/s41467-021-25147-9, 2021.
- 440 Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P. I., and Evans, M. J.: Global inventory of
- 441 nitrogen oxide emissions constrained by space-based observations of NO<sub>2</sub> columns -:
- 442 art. no. 4537, Journal of Geophysical Research-Atmospheres, 108, 10.1029/2003jd003453, 2003.
- 443 Matson, P. A., Naylor, R., and Ortiz-Monasterio, I.: Integration of environmental, agronomic, and
- economic aspects of fertilizer management, Science, 280, 112-115, 10.1126/science.280.5360.112,
- 445 1998.
- 446 Nicholas Hutchings, J. Webb, and Amon, B.: EMEP/EEA air pollutant emission inventory guidebook
- 447 2023: 3.D Agricultural soils 2023, 2023.
- 448 Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural and transboundary
- 449 pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for
- 450 policy, Journal of Geophysical Research-Atmospheres, 109, 10.1029/2003jd004473, 2004.
- 451 Pinder, R. W., Davidson, E. A., Goodale, C. L., Greaver, T. L., Herrick, J. D., and Liu, L. L.: Climate
- 452 change impacts of US reactive nitrogen, Proceedings of the National Academy of Sciences of the
- 453 United States of America, 109, 7671-7675, 10.1073/pnas.1114243109, 2012.
- 454 Rubin, H. J., Fu, J. S., Dentener, F., Li, R., Huang, K., and Fu, H. B.: Global nitrogen and sulfur
- 455 deposition mapping using a measurement-model fusion approach, Atmospheric Chemistry and
- 456 Physics, 23, 7091-7102, 10.5194/acp-23-7091-2023, 2023.
- 457 Russell, A. R., Perring, A. E., Valin, L. C., Bucsela, E. J., Browne, E. C., Min, K. E., Wooldridge, P. J., and
- 458 Cohen, R. C.: A high spatial resolution retrieval of NO<sub>2</sub> column densities from OMI:
- 459 method and evaluation, Atmospheric Chemistry and Physics, 11, 8543-8554, 10.5194/acp-11-8543-
- 460 2011, 2011.
- 461 Shcherbak, I., Millar, N., and Robertson, G. P.: Global metaanalysis of the nonlinear response of soil
- 462 nitrous oxide (N2O) emissions to fertilizer nitrogen, Proceedings of the National Academy of
- 463 Sciences of the United States of America, 111, 9199-9204, 10.1073/pnas.1322434111, 2014.
- 464 Skiba, U., Medinets, S., Cardenas, L. M., Carnell, E. J., Hutchings, N., and Amon, B.: Assessing the
- contribution of soil NO<i><sub></i>></i>> emissions to European atmospheric pollution,
- 466 Environmental Research Letters, 16, 10.1088/1748-9326/abd2f2, 2021.
- 467 Stehfest, E. and Bouwman, L.: N2O and NO emission from agricultural fields and soils under natural
- 468 vegetation:: summarizing available measurement data and modeling of global annual emissions,
- 469 Nutrient Cycling in Agroecosystems, 74, 207-228, 10.1007/s10705-006-9000-7, 2006.





- 470 Steinkamp, J. and Lawrence, M. G.: Improvement and evaluation of simulated global biogenic soil NO
- emissions in an AC-GCM, Atmospheric Chemistry and Physics, 11, 6063-6082, 10.5194/acp-11-6063-
- 472 2011, 2011.
- 473 Tian, H., Pan, N., Thompson, R. L., Canadell, J. G., Suntharalingam, P., Regnier, P., Davidson, E. A.,
- 474 Prather, M., Ciais, P., Muntean, M., Pan, S., Winiwarter, W., Zaehle, S., Zhou, F., Jackson, R. B.,
- Bange, H. W., Berthet, S., Bian, Z., Bianchi, D., Bouwman, A. F., Buitenhuis, E. T., Dutton, G., Hu, M.,
- 476 Ito, A., Jain, A. K., Jeltsch-Thömmes, A., Joos, F., Kou-Giesbrecht, S., Krummel, P. B., Lan, X., Landolfi,
- 477 A., Lauerwald, R., Li, Y., Lu, C., Maavara, T., Manizza, M., Millet, D. B., Mühle, J., Patra, P. K., Peters,
- 478 G. P., Qin, X., Raymond, P., Resplandy, L., Rosentreter, J. A., Shi, H., Sun, Q., Tonina, D., Tubiello, F.
- 479 N., van der Werf, G. R., Vuichard, N., Wang, J., Wells, K. C., Western, L. M., Wilson, C., Yang, J., Yao,
- 480 Y., You, Y., and Zhu, Q.: Global nitrous oxide budget (1980–2020), Earth Syst. Sci. Data, 16, 2543-
- 481 2604, 10.5194/essd-16-2543-2024, 2024.
- 482 Tian, H. Q., Bian, Z. H., Shi, H., Qin, X. Y., Pan, N. Q., Lu, C. Q., Pan, S. F., Tubiello, F. N., Chang, J. F.,
- Conchedda, G., Liu, J. G., Mueller, N., Nishina, K., Xu, R. T., Yang, J., You, L. Z., and Zhang, B. W.:
- 484 History of anthropogenic Nitrogen inputs (HaNi) to the terrestrial biosphere: a 5 arcmin resolution
- 485 annual dataset from 1860 to 2019, Earth System Science Data, 14, 4551-4568, 10.5194/essd-14-
- 486 4551-2022, 2022.
- 487 Tian, H. Q., Yang, J., Xu, R. T., Lu, C. Q., Canadell, J. G., Davidson, E. A., Jackson, R. B., Arneth, A.,
- 488 Chang, J. F., Ciais, P., Gerber, S., Ito, A., Joos, F., Lienert, S., Messina, P., Olin, S., Pan, S. F., Peng, C.
- 489 H., Saikawa, E., Thompson, R. L., Vuichard, N., Winiwarter, W., Zaehle, S., and Zhang, B. W.: Global
- 490 soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial
- 491 biosphere models: Magnitude, attribution, and uncertainty, Global Change Biology, 25, 640-659,
- 492 10.1111/gcb.14514, 2019.
- 493 Wang, Y., Yao, Z. S., Zheng, X. H., Subramaniam, L., and Butterbach-Bahl, K.: A synthesis of nitric
- 494 oxide emissions across global fertilized croplands from crop-specific emission factors, Global Change
- 495 Biology, 28, 4395-4408, 10.1111/gcb.16193, 2022.
- 496 Wang, Y., Ge, C., Garcia, L. C., Jenerette, G. D., Oikawa, P. Y., and Wang, J.: Improved modelling of
- 497 soil NOx emissions in a high temperature agricultural region: role of background emissions on NO2
- 498 trend over the US, Environmental Research Letters, 16, 10.1088/1748-9326/ac16a3, 2021.
- 499 Wang, Y., Yao, Z. S., Pan, Z. L., Guo, H. J., Chen, Y. C., Cai, Y. J., and Zheng, X. H.: Nonlinear response
- 500 of soil nitric oxide emissions to fertilizer nitrogen across croplands, Biology and Fertility of Soils, 60,
- 501 483-492, 10.1007/s00374-024-01818-9, 2024.
- 502 Weng, H. J., Lin, J. T., Martin, R., Millet, D. B., Jaegle, L., Ridley, D., Keller, C., Li, C., Du, M. X., and
- 503 Meng, J.: Global high-resolution emissions of soil NOx, sea salt aerosols, and biogenic volatile organic
- 504 compounds, Scientific Data, 7, 10.1038/s41597-020-0488-5, 2020.
- 505 Yienger, J. J. and Levy, H.: EMPIRICAL-MODEL OF GLOBAL SOIL-BIOGENIC NOX EMISSIONS, Journal of
- 506 Geophysical Research-Atmospheres, 100, 11447-11464, 10.1029/95jd00370, 1995.
- 507 Yuan, H., Dai, Y. J., Xiao, Z. Q., Ji, D. Y., and Shangguan, W.: Reprocessing the MODIS Leaf Area Index
- 508 products for land surface and climate modelling, Remote Sensing of Environment, 115, 1171-1187,
- 509 10.1016/j.rse.2011.01.001, 2011.
- Zaehle, S. and Dalmonech, D.: Carbon-nitrogen interactions on land at global scales: current
- 511 understanding in modelling climate biosphere feedbacks, Current Opinion in Environmental
- 512 Sustainability, 3, 311-320, 10.1016/j.cosust.2011.08.008, 2011.
- 513 Zaehle, S. and Friend, A. D.: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1.
- Model description, site-scale evaluation, and sensitivity to parameter estimates, Global
- 515 Biogeochemical Cycles, 24, 10.1029/2009gb003521, 2010.
- 516 Zhai, S. X., Jacob, D. J., Wang, X., Liu, Z. R., Wen, T. X., Shah, V., Li, K., Moch, J. M., Bates, K. H., Song,
- 517 S. J., Shen, L., Zhang, Y. Z., Luo, G., Yu, F. Q., Sun, Y. L., Wang, L. T., Qi, M. Y., Tao, J., Gui, K., Xu, H. H.,
- 518 Zhang, Q., Zhao, T. L., Wang, Y. S., Lee, H. C., Choi, H., and Liao, H.: Control of particulate nitrate air
- 519 pollution in China, Nature Geoscience, 14, 389-+, 10.1038/s41561-021-00726-z, 2021.

https://doi.org/10.5194/egusphere-2025-1416 Preprint. Discussion started: 12 May 2025 © Author(s) 2025. CC BY 4.0 License.





Zhang, R. Y., Tie, X. X., and Bond, D. W.: Impacts of anthropogenic and natural NO<sub>x</sub>
sources over the US on tropospheric chemistry, Proceedings of the National Academy of Sciences of the United States of America, 100, 1505-1509, 10.1073/pnas.252763799, 2003.
Zhao, Y., Saunois, M., Bousquet, P., Lin, X., Hegglin, M. I., Canadell, J. G., Jackson, R. B., and Zheng, B.: Reconciling the bottom-up and top-down estimates of the methane chemical sink using multiple observations, Atmos. Chem. Phys., 23, 789-807, 10.5194/acp-23-789-2023, 2023.